Nanotecnologie: materiali e metodi di produzione

M. Cannas

Dipartimento di Fisica e Chimica «Emilio Segrè», Università degli Studi di Palermo, Italy

Laboratory «Roberto Boscaino» of Advanced Materials Web: www.unipa.it/lamp/

Palermo, 16/05/2018

Sommario

Introduzione:

- Proprietà peculiari dei materiali nanometrici
- Alta superficie specifica --- Confinamento quantistico

Metodi di produzione

Pulsed Laser Ablation (PLA)

Applicazioni di PLA:

- Nanocristalli di Silicio «ossidato»
- Nanoparticelle di ZnO

troduzione

Il controllo delle proprietà ottiche/elettriche di un materiale è i principale **goal** delle moderne nanotecnologie

itrollo della morfologia (dimensione, forma) e a composizione chimica (volume, superficie)

averso processi di sintesi

prietà peculiari dei materiali nanometrici non dipendono esclusivamente dalla loro composizione

issione di luminescenza: tunabilità, stabilità, brillanza

minescenza

Proprietà ottica di Semiconduttori/Isolanti Materiali con gap ottica $E_{g} \sim 1-10 \text{ eV}$

1/2 Proprietà peculiari dei materiali nanometrici (geometria)

Superficie specifica $\sigma = \sup_{tot}/massa [m^2/g]$

dimensioni delle particelle (r)

 $\sigma \propto 1/r$

r ~ nm: nanoparticelle (NP) σ ~ 100 m²/g

2

Superficie è *per definizione* un'interruzione del network cristallino

Propr. Elettr. (volume) ≠ Propr. Elettr. (superficie) *inv. traslazionale 3D*

Superficie è:
1) Interfaccia fra il solido e l'ambiente esterno
2) Un «contenitore» di difetti (*dangling bonds*...); densità superficiale φ ≥ 10¹⁶ /m²

difetti/massa = $\phi \cdot \sigma \propto 1/r$ $\geq 6 \cdot 10^{12} / g$ $\geq 6 \cdot 10^{12} / g$ $\leq 6 \cdot 10^{12} / g$ $\leq 6 \cdot 10^{12} / g$ $\leq 6 \cdot 10^{12} / g$

Superficie poco estesa

macro ($\sigma \sim 10^{-4} \text{ m}^2/\text{g}$)

nio (grafite, diamante)

Superficie molto estesa

nano ($\sigma \sim 10^2 \text{ m}^2/\text{g}$)

Laboratory «Roberto Boscaino»

of Advanced Materials

Silice (nanoparticelle)

2 Proprietà peculiari dei materiali nanometrici (confinamento quantisti

onfinamento Quantistico (QC)

Nanoparticelle: Quantum Dots (QDs)

portanza della scala nanometrica si capisce attraverso il confronto con le ensione dell'**eccitone** (coppia elettrone-buca)

$$a_B(n) = \frac{a_0 \epsilon}{\mu/m_e} \cdot n^2; \qquad E_n = -\frac{\mu/m_e R_H}{\epsilon^2} \cdot \frac{1}{n^2}$$

 $a_0 \approx 0.53$ Å raggio di Bohr; $a_B(n = 1)$ raggio _eccitone $a_B(Ge) \approx 24.3 nm; E \approx 3 \text{ meV}$ $a_B(Si) \approx 4.9 nm; E \approx 15 \text{ meV}$ $a_B(ZnO) \approx 2.3 nm; E \approx 60 \text{ meV}$

QC si osserva se le dimensioni delle NPs e dell'eccitone sono confrontabili $(r | a_B)$

Confinamento Quantistico (QC)

 $|a_B\rangle$: il sistema può essere studiato qualitativamente utilizzando il modello di una inticella (eccitone) all'interno di una **buca di potenziale a pareti infinite**

QC: come si osserva?

Spettro di emissione degli eccitoni

$$E_{exc} = E_g^{Bulk} - \frac{\mu/m_e R_H}{\epsilon^2} \cdot \frac{1}{n^2} + \frac{\hbar^2 \pi^2}{2\mu r^2}$$

 E_q vs. dimensioni - semicondutto

QC: esempio

Silicon nanocrystal Si-NC:

milestone in the development of nanotechnology

Leonid Khriachtchev

ilicio

- / gruppo della tavola periodica
- truttura cristallina covalente cubica facce centrate
- Semiconduttore a gap indiretta

 Γ (K={0,0,0}); X (K={1,0,0}2\pi/a); L({1/2,1/2,1/2}2\pi/a)

prietà BULK E NANOCRISTALLI

Si-NCs

<u>nham (1990):</u>

ma osservazione delle

prietà di

oluminescenza nel range visibile in silicio poroso.

Ha aperto la possibilità di sviluppo di dispositivi *optoelettronici* di Silicio!

-NCs: prime evidenze sperimentali del onfinamento Quantistico (QC)

Proprietà sorprendenti rispetto al Si-Bulk

Il Silicio (Si) è un semiconduttore a gap indiretta. A temperatura ambiente (T=300 K) l'energia-gap vale: E_g≈1.1 eV

Nei semiconduttori a gap indiretta, il processo di fotoluminescenza avviene con probabilità minore (tempo di vita maggiore) rispetto ai semiconduttori a gap diretta.

Semiconduttori a gap diretta (ZnO; GaN..) : $\tau \sim 10^{-9} - 10^{-8}$ s Semiconduttori a gap indiretta (Si; Ge..) : $\tau \sim 10^{-5} - 10^{-3}$ s

Le proprietà ottiche di un semiconduttore a gap diretta cambiano completamente se questo viene ridotto a dimensioni nanometriche.

Aumento del rate di emissione

Aumento del rate di emissione

 $\Delta x \cdot \Delta p \sim \hbar$ $\Delta x \cdot \Delta k \sim 1$ Principio d'indeterminazione

 $\Delta x \rightarrow grande (\sim 10^{-2}m) \Rightarrow \Delta k \rightarrow piccolo (\sim 10^{2}m^{-1})$

Fonone reticolare necessario alla ricombinazione

 $\Delta x \rightarrow piccolo \ (\sim 10^{-9}m) \Rightarrow \Delta k \rightarrow grande \ (\sim 10^{9}m)$

Funzioni d'onda di elettrone e buca si allargano. Transizione *direct-like* favorisce la ricombinazione senza l'intervento del fonone

Metodi di produzione

CNICHE DI PRODUZIONE

NICHE DI PRODUZIONE

BOTTOM UP

ABLAZIONE LASER

IMPIANTAZIONE IONICA

ETCHING

POLVERIZZAZIONE CATODICA

- **1. DEPOSIZIONE CHIMICA DA VAPORE**
- 2. OSSIDAZIONE / RIDUZIONE IN SOLUZIONE
- 3. EPITASSIA DA FASCI MOLECOLARI

CNICHE DI PRODUZIONE

<u>TOP-DOWN</u>

BOTTOM UP

ABLAZIONE LASER

IMPIANTAZIONE IONICA

ETCHING

POLVERIZZAZIONE CATODICA

- **1. DEPOSIZIONE CHIMICA DA VAPORE**
- 2. OSSIDAZIONE / RIDUZIONE IN SOLUZIONE
- 3. EPITASSIA DA FASCI MOLECOLARI

DEPOSIZIONE CHIMICA DA VAPORE (bottom-up)

PECVD (Plasma-enhanced chemical vapor deposition)

 $SiH_4(g) + xN_2O(g) \rightarrow SiO_x(s) + 2H_2(g) + xN_2(g)$

amples

 O_x/SiO_2 multi-layers grown on a p-type crystalline Si substrate.

SiO_x produced by evaporation of SiO powder.

SiO₂ produced by electron beam evaporation of fused quartz

Sample	SiO _x /SiO ₂ thickness (nm)	Ann. Temp (°C)	Layers number
1	2.2/2.8		64
2	2.2/2.8	1100	64
3	4.4/2.8	1100	32
4	8.4/2.8	1100	50

2 hours annealing at 1100 °C induces the formation of Si-NCs

Fig. 2. HR TEM image of a cross section of the 4/3 nm MNS annealed at 1100°C.

Luminescenza

 $E_{exc} = 4.6 \text{ eV}$

TECNICHE DI PRODUZIONE

<u>TOP-DOWN</u>

ABLAZIONE LASER

IMPIANTAZIONE IONICA

ETCHING

POLVERIZZAZIONE CATODICA

- **1. DEPOSIZIONE CHIMICA DA VAPORE**
- 2. OSSIDAZIONE / RIDUZIONE IN SOLUZIONE
- 3. EPITASSIA DA FASCI MOLECOLARI

Pulsed laser ablation (PLA) in liquid

- Il fascio laser viene focalizzato sulla superficie del target.
- Il target viene ruotato o mosso per evitare che il laser colpisca sempre la stessa area.
- Fluenza (J/cm²): densità di energia fornita.

$$\Delta f = l \left(1 - \frac{f}{\sqrt{n^2 f^2 + (n^2 - 1)r^2}} \right)$$

 $r \ll f$, $\Delta f = l\left(1 - \frac{1}{n}\right)$

r : raggio del fascio laser *n* : indice di rifrazione del solvente

Interazione laser/materia

Timescale (s)

Principali step dell'ablazione

l'ablazione in liquido si differenzia l'ablazione in gas dopo 10⁻¹⁰ s

Parametri del plasma plume:

 $T \approx 10^3 \text{ K}$ P $\approx 10^9 \cdot 10^{10} \text{ Pa}$

A

Vantaggi e svantaggi

Am Cm Bk

Pu

Cf Es Fm

Li Na K Rb

Cs Ba * Fr Ra **

- Semplicità e basso costo
- Metodo green
- Gran varietà di materiali ottenuti
- Controllo dei parametri di sintesi: laser, target, soluzione

- Non applicabile su larga scala (10 mg/ora)
- Scarso controllo della forma delle NP

Effetto dei parametri sperimentali

Parametri del laser

- Lunghezza d'onda
- Numero di impulsi
- Energia dell'impulso
- Durata dell'impulso
- Repetition rate

Parametri materiali

- Target bulk
- Solventi

ametri del laser: lunghezza d'onda (frequenza)

ondizioni da soddisfare:

a soluzione deve essere trasparente al fascio laser

l fascio laser deve essere assorbito dal target entro pochi nanometri»

 $arget(v_{laser}) \ge 10^7 cm^{-1}$

Valida per i metalli in un ampio range spettrale Valida per isolanti e semiconduttori se $h \cdot v_{laser} > E_g$

Esempio: Spettro assorbimento acqua distillar

Parametri del laser: numero impulsi

Laser: Nd-YAG 1064 nm, 355 nm 60 ps RR=20Hz d_{spot} =0.2mm Target: Wafer di Silicio in 2 ml di acqua deionizzata (DIW)

Romuald.I. et al. DOI:10.1364/OE.22.003117(2014)

ametri del laser: durata dell'impulso (t_{laser})

La criticità di questo parametro è legata al tempo di termalizzazione del target (τ_{therm} ~ps)

 $s_{er} \sim fs \ll \tau_{therm}$ gli elettroni non hanno il tempo di termalizzare col reticolo

 $\tau_{laser} \sim ns >> \tau_{therm}$ la termalizzazione coinvolge un area grande dello spot laser

Non-thermal ablation

thermal ablation

Parametri del laser: durata dell'impulso

thermal ablation

Non-thermal ablation

Figure 4: SEM photograph of a hole drilled in a steel foil with (a) 3.3 ns, 1mJ, $\phi = 4$, 2J cm¹; (b) 80 ps, 900µJ, $\phi = 3.7$ J cm¹; and (c) 200 fs, 120 µJ, $\phi = 0.5$ J cm¹ laser pulses at 780 nm [12].

Effetto del solvente

Esempio

- Viscosità, densità e tensione superficiale
- Interazione con le nanoparticelle

Confinamento e dinamica del plume

 Capping e modifiche chimiche e strutturali

V. Amendola , PCCP ,15 (2013) 3009-3010

Effetto del solvente

Laboratory «Roberto Boscaino» of Advanced Materials

pplicazioni di PLA

Ossidi nano-strutturati sintetizzati con ablazione laser in liquido

cniche sperimentali

Time-resolved PL re-interpretata!!

Gating:

ritardo τ , acquisizione Δt controllabili via computer (ns-ms)!! possibilità di accumulare più spettri per ogni ritardo τ (sulla CCD e via software)

1) Production of Si-nc/SiO₂

Applied Surface Science 302 (2014) 62-65

JOURNAL OF APPLIED PHYSICS 120, 024303 (2016)

Self-limiting and complete oxidation of silicon nanostructures produce by laser ablation in water

2

Δ

k for updates Enhancing the luminescence efficiency of silicon-nanocrystals by interaction with H⁺ ions[†]

ORIGINAL PAPER

eo isydd

Si/SiO₂ Nanoparticles

Luminescence Efficiency of Si/SiO₂ Nanoparticles Produced by Laser Ablation

Proprietà morfologiche/strutturali

DXS

<u>1000</u>

3 nm

HRTEM

3 nm

Si cubic structure: lattice parameter a=5.4305 Å

Si polycrystal surrounded by amorphous SiO_2 layer with an interface mainly composed by Si_3O

Proprietà vibrazionali IR

µ-Raman

Assorbimento

)C

$\Delta x \cdot \Delta k \sim 1$

Bulk: $\Delta x \rightarrow grande \ (\sim 10^{-2}m) \Rightarrow \Delta k \rightarrow piccolo \ (\sim 10^{2}m^{-1})$

NC: $\Delta x \rightarrow piccolo \ (\sim 10^{-9}m) \Rightarrow \Delta k \rightarrow grande \ (\sim 10^{9}m^{-1})$

Proprietà ottiche PL/OA

Goal!

Increase the brightness:

Enhancement of PL quantum efficiency

Experimental Methods

Laser Ablation

Si-Target in deionized water

Soluzioni «acide» e «basiche» Al variare del pH da 1 a 10

Time-resolved PL IR absorption

Results PL dependence on pH

PL peak at 1.95 eV

PL intensity increases by a factor of ~20 upon decreasing the pH from 10 to 2.

Results PL dependence on pH

 I_{PL} and τ are correlated $I_{PI} \propto \eta = k_r / (k_r + k_{nr}) = k_r \times \tau$

I_{PL} is related to the variation of η

Hypothesis: η is limited by the existence of centers on which the excitons non-radiatively recombine (non-radiative defects)

Results PL efficiency: dependence on pH

Maximum efficiency: $\eta_{max} = k_r \times \tau_{max}$

$$k_{r} \le 1/\tau_{max} \approx 3.6 \times 10^{4} \text{ s}^{-1}$$

 $\eta = k_{r} / (1/\tau) = k_{r} / (1/\tau_{max} + \Delta k_{nr})$

enhancement of η on increasing [H⁺], consistently with the passivation non-radiative def

Results IR absorption: dependence on pH

What about the origin of non-radiative defects?

Linear correlation between [SiH] and I_{PL}

) cm⁻¹ \rightarrow SiH bending mode et al. J. Non-Cryst. Solids **185** (1995) 249 When diluted in solution **[SiH]**_{max} ~ 10^{17} cm⁻³ in accordance with [H⁺] that determines the saturation of η

First proposal: *H*⁺ ions passivate the non radiative defects, thus increasing [SiH]

The exact structure of non radiative centers remains open!!

Hypothesis! Distorted Si—Si bonds and Si—O—Si bridging bonds at the Si/SiO₂ interface [Lee et al. Adv. Funct. Mater, 22, 3233 (2012): pseudopotential simulations]

In our system: The interface (~3 nm) is Si₃O ... Distorted Si—Si bonds and Si—O—Si bridging bonds could be present!

2) Production of ZnO-nc

ation of Zn nanoparticles probed by online optical spectroscopy during second pulsed laser ablation of a Zn plate in H2O

PCCP

PAPER

Cite this: Phys. Chem. Chem. Phys.

Luminescence mechanisms of defective ZnO nanoparticles

ntrolling the oxidation processes of Zn nanoparticles produced by pulsed laser ation in aqueous solution

Ossido di zinco (ZnO)

ZnO è un semiconduttore del II-VI gruppo

Zincite

Proprietà: Alta mobilità elettronica, ampio band gap,
 biocompatibilità, piezoelettricità e intensa luminescenza a temperatura ambiente

Strutture cristalline

Wurtzite

Zincoblenda

Proprietà elettroniche e ottiche

Rep. Prog. Phys 72, 126501 (2009)

BV: livelli O-2p pieni BC: livelli Zn-3s vuoti

Material	Crystal structure	Lattice constants a and c (Å)	Band gap (eV)	Energy of fusion (K)	Exc. binding energy (meV)	Dielectric constant ε (0) and ε (∞)
ZnO	Wurtzite	3.25	3.37	2,248 (60	8.75
		5.21			\smile	3.75
ZnS	Wurtzite	3.82	3.8	2,103	30	9.6
		6.26				5.7
ZnSe	Zinc blende	5.66	2.7	1,793	20	9.1
						6.3
GaAs	Zinc blende	5.65	1.43		4.2	12.9
						10.9
GaN	Wurtzite	3.19	3.39	1,973	21	8.9
		5.19				5.35
SiC	Wurtzite	3.18	2.86	>2,100	-	9.66
		15.12				6.52

Luminescenza eccitonica

ZnO NPs: effetti QC

 $R_{\rm B} ZnO = 2.23 nm$

Wavelength (nm)

Difetti ZnO nano-strutturato

Difetti intrinseci Livelli energetici calcolati tramite DFT $E_{o} = \frac{Zn_{i}^{2*}}{V_{2n}^{2*}} = \frac{Zn_{i}^{2}}{Zn_{i}^{1}} = \frac{V_{o}^{0}}{V_{o}^{2*}} = \frac{H_{i}}{V_{o}^{2}} = \frac{V_{o}Zn_{i}}{V_{o}Zn_{i}} = \frac{V_{o}$

- Oi : banda gialla (2 eV)
- Zni: banda blu (2.8 eV)
- Vo: banda verde (2.3 eV)
- Vzn: banda verde (2.5 eV)

Adv. Funct. Mater. 2010, 20, 561-572

Ablazione di zinco in acqua

Setup sperimentale:

Foil di Zn in 10mL di acqua deionizzata (becker 100mL) Laser Nd-Yag (1064 nm), ≈ 5 ns; Laser Ti:Sapphire (800 nm), ≈50 fs

Subito dopo l'ablazione

dopo un ora

ratterizzazione microscopica: ²etto della durata dell'impulso

Morphology and structure

HRTEM

AFM size distribution

60

P. Camarda, Phys. Chem. Chem. Phys., vol. 18, pp. 16237, 2016.

Optical properties

Misure ottiche in situ

Misure OA online

Durante l'ablazione Dopo l'ablazione 1 s 600 s 1.6 1.6 30 s Plasmonic peak 660 s 60 s 700 s 80 s 1.4 1.4 750 s Edge of ZnO 40 s 800 s 1.2 1.2 170 s 850 s 195 s 1000 s 220 s 1.0 1.0 - 1200 s 270 s **DOD** 320 s 0.8 0.8 370 s 420 s 470 s 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0.0 3.5 5.0 3.0 4.5 5.5 6.0 4.0 3.0 3.5 4.5 5.0 5.5 4.0 6.0 Energy (eV) Energy (eV) Plasmonic peak: Edge ZnO : Metallic Electron Cloud Nanoparticle oscillazione degli elettroni del meta Formazione di ZnO. Indotta dalla radiazione e.m.

Misure PL online

cesso multi-steps l'ossidazione di Zn-NPs rante l'ablazione in acqua

per la vostra attenzione!!!

