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Sunlight

Citric Acid Urea
Deionized 

Water

BOTTOM UP SYNTHESIS

Purification
UV light

Lasing

Extraordinary 

Optical Properties: 

High QY

Messina et al., 2016, J Mater Chem C

Sciortino et al., 2018, Chem. Mater. 
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Infrared Absorption Spectroscopy
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STRUCTURAL & MORPHOLOGICAL INVESTIGATION

High Resolution Transmission Electron 

Microscopy

NEW STRUCTURE! 

Monocrystals of b-C
3
N

4

C → sp
3

N → sp
2

6 nm Nanoparticles

Messina et al., 2016, J Mater Chem C

Sciortino et al., 2018, Chem. Mater. 
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Absorption Spectrum

Emission Spectra

Tunable Band Decay Kinetics

Tunable Band

t4 ns

Sciortino et al., 2016, J. Phys. Chem. Lett. 
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EMISSION MECHANISM IN b-C
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Sciortino et al., 2016, J. Phys. Chem. Lett.

Influence of H-bonding

Excitation Spectra: 

Hardly solvent-sensitive

Emission Spectra: 

Strong and regular Solvatochromism

QY values & Decay 

pathways are strongly 

solvent-dependent → K
nr

solvent-dependent

No H-bonds

H-bonds
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Transient Absorption

Times

t
1
=0.19 ps

t
2
=2.1 ps

Solvation → Verified with other 

Solvents (not shown) 

t
3
>1 ns

Depopulation of 

the excited state

Ground State 

Depopulation

Excited State 

Absorption

Stimulated

Emission
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Sciortino et al., 2016, J. Phys. Chem. Lett.

• Coupling between Core 

and Surface 

• Charge Separation

• Localized Negative 

Charge Exposed to 

Solvent

• Direct population of the 

excited state

• In sub-ns range only

Solvation Relaxation

• In ns range 

Depopulation of excited 

state



INTERACTION WITH IONS

Sciortino et al., 2017, Nanoscale

Quenching



INTERACTION WITH IONS

Dynamic Quenching

Sciortino et al., 2017, Nanoscale

Quenching



INTERACTION WITH IONS

Dynamic Quenching

Sciortino et al., 2017, Nanoscale

Quenching



INTERACTION WITH IONS

Dynamic Quenching

Static Quenching

Formation of Cu
2+

-

CDs Complexes

Decay Times Driven

by Solvation

Sciortino et al., 2017, Nanoscale

Quenching

Decay times

t
1
=0.19 ps

t
2
=2.1 ps



EMISSION MECHANISM IN b-C
3
N

4

Sciortino et al., 2016, J. Phys. Chem. Lett.

• Coupling between Core 

and Surface 

• Charge Separation

• Localized Negative 

Charge Exposed to 

Solvent

• Direct population of the 

excited state

• In sub-ns range only

Solvation Relaxation

• In ns range 

Depopulation of excited 

state

Quenching:

• Formation of Cu
2+

-CDs

Complexes

• Decay Times Driven by 

Solvation
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Cayuela et al., 2013, Anal Chim Acta

Absorption & IR Spectra Emission Spectra
Graphitic core

Sciortino et al., 2017, Phys. Chem. Chem. Phys.

Decay Kinetics

t13.5 ns

t212.0 ns

QY4%
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Sciortino et al., 2017, Phys. Chem. Chem. Phys.

• Emission is Activated by Surface 

Passivation

• Emission is independent of core structure

(not shown)

• Emission is Independent of Type of 

Surface Passivation

• Emission Quenching is

Dependent on  Type of 

Surface Passivation

BUT…
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ULTRAFAST TECHNIQUES TO UNRAVEL THE PHOTOCYCLE

Ultrafast Fluorescence

Decay times

t
1
=0.3 ps

t
2
=2.5 ps

t
3
=70 ps

t
4
>1 ns

Direct population of 

Excited State and its

Depopulation → QY4%



EMISSION MECHANISM IN GRAPHITIC SAMPLE

• Passivation creates emissive 

states

• Electronic Transition 

Involves the Surface

• The Wavefunction is

Delocalized on the Surface 

and involves different 

functional groups

• Sub-ns Depopulation of 

excited state which causes

4% of QY
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CDs are Different Families of 
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Unravelled the Photophysics

Which are the Emission

Mechanisms:

Core-Surface Coupling – Electron 

Transfer Character

or

Surface Delocalized States
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