The Fundamental Photophysics of Fluorescent Carbon Nanodots

Alice Sciortino

May 10th, 2019, Palermo

Purpose

Understanding the entire CDs Photocycle

Different families of Carbon Nanodots

Strategy

Purpose

Understanding the entire CDs Photocycle

Different families of Carbon Nanodots

Strategy

Structural & Morphological Characterization

> Optical Characterization

Purpose

Understanding the entire CDs Photocycle

Different Synthesis Routes

Different Synthesis Routes AFM, HRTEM, XRD,

. . .

Different Synthesis Routes AFM, HRTEM, XRD,

Nanosecond Time Resolved

. . .

Different Synthesis Routes AFM, HRTEM, XRD,

Nanosecond Time Resolved Transient Absorption

. . .

Different Synthesis Routes AFM, HRTEM, XRD,

Nanosecond Time Resolved Transient Absorption Ultrafast Fluorescence

2 CDs Families: Top Down & Bottom Up Synthesis

Structural & Morphological Characterization

Strategy

Optical Characterization

Purpose

Understanding the entire Photocycle

Nanosecond Time Resolved

Transient Absorption

CARBON NANODOTS: ID CARD

Photoluminescence Phenomenology

Uncommon in other C-based nanomaterials

Intense

Tunable

•Highly sensitive to the environment: solvent, ions, pH

CARBON NANODOTS: FUNDAMENTAL QUESTIONS

Photoluminescence Phenomenology

Uncommon in other C-based nanomaterials

Intense

Tunable

•Highly sensitive to the environment: solvent, ions, pH

How to Explain this Phenomenology?

Origin of the emission? Core? Surface? Size effects? Response to the environment? Phoinduced electron transfer mechanisms? Tunability? Disorder? Role of crystalline structure?

CARBON NANODOTS: FUNDAMENTAL QUESTIONS

Photoluminescence Phenomenology

Uncommon in other C-based nanomaterials

Intense

Tunable

•Highly sensitive to the environment: solvent, ions, pH

How to Explain this Phenomenology?

Origin of the emission? Core? Surface? Size effects? Response to the environment? Phoinduced electron transfer mechanisms? Tunability? Disorder? Role of crystalline structure?

CARBON NANODOTS: FUNDAMENTAL QUESTIONS

Photoluminescence Phenomenology

Uncommon in other C-based nanomaterials

Intense

Tunable

•Highly sensitive to the environment: solvent, ions, pH

How to Explain this Phenomenology?

Origin of the emission? Core? Surface? Size effects? Response to the environment? Phoinduced electron transfer mechanisms? Tunability? Disorder? Role of crystalline structure?

Experimental Results

BOTTOM UP SYNTHESIS

STRUCTURAL & MORPHOLOGICAL INVESTIGATION

Atomic Force Microscopy

6 nm Nanoparticles

Messina et al., 2016, J Mater Chem C Sciortino et al., 2018, Chem. Mater.

STRUCTURAL & MORPHOLOGICAL INVESTIGATION

Atomic Force Microscopy

6 nm Nanoparticles

1710 cm⁻¹ \rightarrow -COOH 1600 cm⁻¹ \rightarrow -CONH₂ 1380 cm⁻¹ \rightarrow -CN=

Infrared Absorption Spectroscopy

Messina et al., 2016, J Mater Chem C Sciortino et al., 2018, Chem. Mater.

STRUCTURAL & MORPHOLOGICAL INVESTIGATION

High Resolution Transmission Electron Microscopy

Karlsruhe Institute of Technology

6 nm Nanoparticles

1710 cm⁻¹ \rightarrow -COOH 1600 cm⁻¹ \rightarrow -CONH₂ 1380 cm⁻¹ \rightarrow -CN=

NEW STRUCTURE! Monocrystals of β -C₃N₄

$$\begin{array}{c} \mathsf{C} \rightarrow \mathsf{sp}^3 \\ \mathsf{N} \rightarrow \mathsf{sp}^2 \end{array}$$

Messina et al., 2016, J Mater Chem C Sciortino et al., 2018, Chem. Mater.

OPTICAL PROPERTIES OF β -C₃N₄

Absorption Spectrum

OPTICAL PROPERTIES OF β -C₃N₄

Absorption Spectrum

Tunable Band

OPTICAL PROPERTIES OF β -C₃N₄

Tunable Band Decay Kinetics

τ≈**4 ns**

Tunable Band

Emission Spectra: Strong and regular Solvatochromism

Emission Spectra: Strong and regular Solvatochromism

Emission Spectra: Strong and regular Solvatochromism

Excitation Spectra:

Hardly solvent-sensitive

Sciortino et al., 2016, J. Phys. Chem. Lett.

Intensity (arb. un.)

Emission Spectra: Strong and regular Solvatochromism

Intensity (arb. un.)

Excitation Spectra:

Hardly solvent-sensitive

ULTRAFAST TECHNIQUES TO UNRAVEL THE PHOTOCYCLE

ULTRAFAST TECHNIQUES TO UNRAVEL THE PHOTOCYCLE

- Coupling between Core and Surface
 - Charge Separation
 - Localized Negative Charge Exposed to Solvent
- Direct population of the excited state
 - In sub-ns range only Solvation Relaxation
 - In ns range
 Depopulation of excited state

Quenching

Quenching

Dynamic Quenching

Quenching

Dynamic Quenching

Quenching

Static Quenching Formation of Cu²⁺-CDs Complexes

> **Decay times** $\tau_1 = 0.19 \text{ ps}$ $\tau_2 = 2.1 \text{ ps}$

Decay Times Driven by Solvation

Dynamic Quenching

- Coupling between Core and Surface
 - Charge Separation
 - Localized Negative Charge Exposed to Solvent
- Direct population of the excited state
 - In sub-ns range only Solvation Relaxation
 - In ns range
 Depopulation of excited state

Quenching:

- Formation of Cu²⁺-CDs Complexes
- Decay Times Driven by Solvation

Cayuela et al., 2013, Anal Chim Acta

Graphitic core

Graphitic core

Cayuela et al., 2013, Anal Chim Acta

Absorption & IR Spectra

Cayuela et al., 2013, Anal Chim Acta

Emission Spectra Normalized Intensity A00 500 600 Wavelength (nm)

QY≈4%

Graphitic core

Cayuela et al., 2013, Anal Chim Acta

Graphitic core

- Emission is Activated by Surface Passivation
- Emission is independent of core structure (not shown)

BUT...

- Emission is Activated by Surface Passivation
- Emission is independent of core structure (not shown)

BUT...

• Emission is Independent of Type of Surface Passivation

- Emission is Activated by Surface Passivation
- Emission is independent of core structure (not shown)

BUT...

• Emission is Independent of Type of Surface Passivation

Emission Quenching is
 Dependent on Type of
 Surface Passivation

ULTRAFAST TECHNIQUES TO UNRAVEL THE PHOTOCYCLE

ULTRAFAST TECHNIQUES TO UNRAVEL THE PHOTOCYCLE

Ultrafast Fluorescence

Decay times $\tau_1 = 0.3 \text{ ps}$ $\tau_2 = 2.5 \text{ ps}$ $\tau_3 = 70 \text{ ps}$ $\tau_4 > 1 \text{ ns}$

Direct population of Excited State and its Depopulation \rightarrow QY \approx 4%

- Passivation creates emissive states
 - Electronic Transition
 Involves the Surface
 - The Wavefunction is Delocalized on the Surface and involves different functional groups
 - Sub-ns Depopulation of excited state which causes 4% of QY

SUMMARY

Different families of Carbon Nanodots

> Structural & Morphological Characterization

> > Optical Characterization

> > > Understanding the entire Photocycle

CDs are Different Families of Fluorescent Carbon Nanoparticles

Unravelled the Photophysics

Which are the Emission Mechanisms: Core-Surface Coupling – Electron Transfer Character

Surface Delocalized States

or

